|
- GWAS与WGS的区别? - 知乎
cnv-gwas 可为新药靶点的识别提供新的见解,帮助优先选择药物发现的靶点。 系统性 cnv-gwas 有助于发现新的性状关联,特别是对于先前仅从非编码 snp 中识别出的信号,通过预测方法映射到可能的致病基因时。 共定位分析与“位点到基因”(l2g)模型工作流的扩展
- Massive GWAS Meta-Analysis Digs Up Trove of Alzheimer’s Genes
GWAS finds regions in the genome, not genes per se The difficult part is actually finding the underlying causal variant However, we are obtaining a full picture of locations in the genome that may harbor important genetic variants that would facilitate the ability to identify potential targets for drug development
- 在gwas研究中如何寻找最显著的SNP值,然后再根据这个SNP位点筛选候选基因呢? - 知乎
最显著的snp指的是p值最小的点,在gwas研究中一般认为p<5*10-8的点是有显著关联的。 比较早的GWAS研究是直接把这些P<5*10-8拿出来作为易感位点,后来会进一步用conditional 分析去寻找locus上的second signal,或者用stepwise 回归寻找可靠的causal SNP set(也叫做fine-mapping
- GWAS和QTL有什么区别 最后都可以找到基因 他们是什么关系?
GWAS是全基因组关联分析,用的群体一般是自然群体,标记用的一般是高密度的snp标记。 定位到的基因一般都能具体到某个或者某几个snp上。 QTL用的是连锁分析,群体一般是遗传背景相近的遗传连锁群,标记密度一般没必要特别高,但也可以用snp标记,只是说有
- Large Neuropathology GWAS Finds Four New Dementia Genes
The GWAS turned up eight dementia genes, four known and four new First, the known genes: APOE, BIN1, TMEM106B, and GRN APOE was associated with all three AD pathologies, as well as CAA and TDP-43, while the AD gene BIN1 associated with CERAD and tangles, but not total plaques
- Largest Alzheimer GWAS in African Americans Finds New Variants
Furthermore, the GWAS loosely tied four new common variants to AD—one near the intracellular trafficking gene EDEM1, one within the immune response gene ALCAM, another within GPC6, a gene involved in recruiting glutamatergic receptors to the neuronal membrane; and one within VRK3, which encodes a kinase implicated in glutamate neurotoxicity
- GWAS - 知乎
GWAS实验室 – GWASLab GWASLab目录(最近更新 - 2023年02月24日: GWASLab:GWAS中的赢家诅咒与其校正 Winner's curse correction )GWAS推荐阅读 Recommended ReadingGWAS与群体遗传学基础 Fundamentals of GWAS质量控制 Quality Control 单倍型定相与基因型填充 Haplotype phasing Genotype imuptationGWAS检验方法 Association TestsGWAS后分析 Post-GWAS
- 生物信息学全基因组测序GWAS 如何用小样本50甚至更低的样本数寻找与表型相关的SNP位点? - 知乎
在GWAS分析中,一般使用多重比较校正来控制假阳性率。但是,对于小样本,这种方法可能会增加假阴性的风险。因此,可以使用一些基于贝叶斯方法的校正和Bootstrap等方法,来确定合适的P值阈值。 增加样本数量是提高统计功效的一种有效方法。
|
|
|